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INVITED ARTICLE

The theory of elastic constants

A. Ferrarini*

Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy

(Received 14 December 2009; accepted 28 March 2010)

The elastic theory of liquid crystals can be traced back to the early 1930s, but the origin of the molecular theory of
elastic constants must be postponed to more than 30 years later, when Alfred Saupe wrote his famous papers on this
subject. At approximately the same time, the seminal works by Priest and Straley also appeared. Since then, several
theories have been developed to connect intermolecular interactions to curvature deformations, on a quite different
length-scale, in liquid crystals. This field was particularly alive between the end of the 1970s and the beginning of the
1980s, in parallel with experimental investigations. In more recent times, a renewed interest was aroused by the
controversy about the second-order splay-bend contribution, which appears in the Nehring–Saupe expression for the
deformation energy density. In the first part of the present contribution the molecular theory of elastic constants is
briefly reviewed. This paper focuses on the effects of molecular structure on the elastic constants of thermotropic
nematics and the ability of different models to account for them. A few classical examples are discussed to illustrate
these issues. The second part of this paper is dedicated to our recent ‘Surface Interaction’ model, a molecular field
approach based on the Maier–Saupe theory, implemented into a framework allowing for atomistic molecular
modelling. The theoretical background is outlined, then some new results are reported and the insights derived
from a realistic molecular representation are discussed. We conclude that, after about 40 years of theoretical
investigations, there is a general consensus on the importance of the molecular shape in determining the elastic
constants of nematics: for fairly rigid compounds these can be simply related to the length-to-width ratio, but for the
general case of non-rigid mesogens the molecular flexibility and shape curvature have to be taken into account.

Keywords: elasticity; molecular field theory; liquid crystals

1. Introduction

Long-range orientational order in liquid crystals

(LCs) entails the definition of a mesoscale variable

(the director) which can be controlled by external fields

and is characterised by an elastic response. The latter

property can be described by the continuum theory:

herein an elastic energy is defined as a function of the

curvature strains, with the assumption that the LC

sample is incompressible. The constraints imposed by
the LC symmetry lead to the identification of a small

number of fundamental torsional modes. For long-

wavelength deformations, the expansion of the elastic

energy density as a function of the curvature strains

can be truncated at quadratic terms, with coefficients

that play the role of elastic moduli. The foundations of

the elastic theory of LCs were laid by Oseen [1] and

Zocher [2] in the 1930s and later re-examined by Frank
[3]. The continuum theory forms the basis of our pre-

sent understanding of LCs; in particular, it provides

the framework for explaining the behaviour of LC

samples under perturbing fields, which underlies

most LC applications.

In the context of the continuum theory, the elastic

constants are material parameters, whose number and

kind are defined by the phase symmetry. The condi-

tions for stability of the LC phase impose boundaries

on their values: an example is provided by the so-

called Ericksen inequalities for the elastic constants
of nematics [4]. Several experimental data are avail-

able for nematics which, along with some general

trends, also show a specific dependence upon the che-

mical constitution. The availability of LC materials

with suitable elastic properties is important for LC

applications [5], hence the interest in understanding

their origin. The investigation of the relationship

between the molecular structure and the elastic con-
stants is also motivated by fundamental reasons, since

the elastic parameters reflect the underlying intermo-

lecular interactions responsible for the existence of LC

phases: due to the anisotropic averaging, some fea-

tures emerge in LCs that are completely washed out

by the isotropic distribution in ordinary liquids.

A fundamental contribution to our present molecu-

lar-level understanding of the elasticity of thermotropic
LCs is due to Alfred Saupe. He predicted the depen-

dence of elastic constants on the orientational order

parameter, K , S2 [6], which he could then test

experimentally [7]. Moreover, he derived an expression
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for the elastic free energy, hence denoted as the

‘Nehring–Saupe’ form [8, 9]; this contains the second-

order splay-bend contribution, which has been the

object of intense debate in subsequent years [10–13].

This paper is dedicated to the theory of elastic

constants of LCs. In the next section an overview of

molecular models will be presented, ranging from
the early Saupe theory to recent developments.

Exhaustive reviews of the elastic theory of LCs have

already appeared [14, 15]; here we shall focus on issues

which are more closely related to Saupe’s work. So,

despite their interest, elastic theories for LC polymers

[16–22] will not be addressed; we shall rather deal with

theories for the nematic phase of low molar mass

thermotropic LCs and examine their ability to account
for the molecular structure. Under this perspective, we

shall describe in some detail a molecular field theory

that we have recently proposed, known as the Surface

Interaction (SI) model, which has the distinguishing

feature of using a realistic representation of the meso-

genic molecules [23]. A few classical examples will be

presented, to illustrate the success and failure of the

molecular theories in explaining the experimental
findings. Finally, in the Conclusion, the main achieve-

ments of the theory of elastic constants will be sum-

marised and open questions will be recalled.

2. Molecular theories for the elastic constants

of nematics

For nematic LCs, three bulk (splay, twist, bend) and two

surface-like (saddle-splay, splay-bend) deformation

modes are defined; the corresponding elastic constants

exhibit an intriguing dependence on the molecular struc-

ture. Particularly interesting in this respect is the relative

stiffness for different deformations, the so-called elastic

anisotropy which, besides being important as an amplifi-

cation of the anisotropy of intermolecular interactions, is

also relevant for the control of director configurations

in devices [5] and in other LC applications [24, 25].

Molecular theories for elastic constants must deal with

contrasting requirements: on the one hand, they should

retain enough molecular detail to allow a comparison

with experimental data but, on the other hand, approx-
imations have to be made to connect the molecular scale

with that of the director deformations. A compromise

must be found; a variety of molecular theories have been

developed, which differ in the form of the underlying

intermolecular interactions and in the approximations

used for the micro–macro connection. Some of these

theories try to introduce a more realistic representation

of the intermolecular interactions at the cost of even
crude assumptions in the statistical description, whereas

other approaches emphasise methodological aspects

related to a statistical derivation appropriate for the LC

phase but are forced to use basic molecular models.

Particularly relevant in the latter respect are approaches

based on the Density Functional Theory (DFT), which

provides a systematic route to connect free energy and

intermolecular interactions [14]. In the following, mole-

cular theories for the elasticity of nematics will be briefly
reviewed, under the perspective of featuring their ability

to shed light on the relation between the molecular struc-

ture and the elastic constants.

In the papers co-authored with Nehring in the early

1970s [8, 9], Saupe presented a theory for the elastic

constants of nematic LCs, considering dispersion forces

between spherical molecules in a dipole–dipole approx-

imation. Starting from the interaction energy between
two volume elements, an expression for the elastic energy

density was derived, using the molecular field approxi-

mation, together with the assumption of perfect orienta-

tional order. A second-order expansion of the free energy

density, fel, was taken, as a function of the director, n,

and its first and second gradients; for nematic and

cholesteric LCs, of D1h and D1 symmetry, respectively,

the following expression was obtained:

fel ¼ k2n � �� nð Þ þ 1

2
K11 � � nð Þ2þ 1

2
K22 n � �� nð Þ½ �2

þ 1

2
K33 n� �� nð Þj j2þk13� � � � nð Þn

þ 1

2
ðK22 þ k24Þ� � n � �ð Þn� � � nð Þn½ �; (1)

where k
2

is the chiral strength, which vanishes in the

achiral nematic phase, and K11, K22 and K33 are the
elastic constants for splay, twist and bend, respectively,

whereas k24 is the saddle-splay and k13 the splay-bend

elastic constant. Equation (1) coincides with Frank’s

expression [3], except for the presence of the latter term

and the redefinition of the splay and bend constants as

K11 ¼ KF
11 - 2k13 and K33 ¼ KF

33 þ2k13, where the

superscript is used for Frank’s constants. These differ-

ences result from the inclusion of the second gradient
of the director field in the free energy expansion. The

splay-bend and the saddle-splay terms have the form

of a divergence and their volume integrals over the

nematic sample can be reduced to surface integrals

over the boundary, using the Gauss theorem (hence

the denomination surface-like to distinguish these

from the other bulk contributions). Thus, these terms

are often neglected when surface effects are not impor-
tant. Surface-like terms have been the object of intense

research activity, encompassing both theoretical and

experimental issues [13]. The saddle-splay contribu-

tion has been shown to be responsible for the induction

of spontaneous deformation and pattern formation in

nematic layers [26, 27]. The role of the splay-bend
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contribution is more controversial, owing to problems

related to the minimisation of the free energy when it is

present [10–12].

In the Nehring–Saupe theory, the following form is

assumed for the interaction energy dU between the

volume elements dv at the position R and dv0 at the

position R0:

dUðn; n0; rÞ ¼ gðn; n0; rÞ dv dv0; (2)

where n and n0 are the directors in R and in R0, respec-

tively, r ¼ R0-R and

gðn; n0; rÞ ¼ �C2

r6
n � n0 � 3 n � u� n0 � uð Þ½ �; (3)

with u¼ r/r. The strength of the interaction is taken as
C ¼ arS, where S ¼ P2h i is the second-rank orienta-

tional order parameter, r is the number density and a
is a molecular property [28]. Thus, Kii/ S2 is obtained,

together with the ratios K11: K22: K33: k24: k13 ¼ 5: 11:

5: -9: -6, irrespective of the mesogen and the tempera-

ture; the contribution of the second-order derivatives

(k13) is essential for K11 to be positive. The predicted

elastic ratios are in clear disagreement with experi-
ment, since in general K22 , K11 , K33 is found for

calamitics. The difference from the experimental find-

ings was ascribed by the authors to the neglect of

short-range order effects.

Another reason for this discrepancy could be the

interaction law given in Equation (3). The influence of

the form of the interaction law, along with that of the

deviation from spherical symmetry of the interaction
volume, within the same molecular field approach

proposed by Nehring and Saupe, were investigated

by Evangelista, Barbero and co-workers [29–31].

Using simple parameterisations of g(n, n0, r), easily

tractable expressions for the bulk and surface-like

elastic constants are obtained, which allow a systema-

tic analysis of the effects of the interaction law. These

studies reveal that different choices can have dramatic
effects, which encompass even negative values of the

bulk elastic constants, a result deemed interesting in

relation to the onset of instabilities in the nematic

phase. As for the surface-like elastic constants, an

even larger variety of behaviour is found, depending

on the interaction model. These investigations high-

light effects and show trends, but the connection with

experimental data remains loose, because the relation
between the model parameters and the structure of

real mesogens is not straightforward.

The restriction to second-rank order parameters was

relaxed by other approaches including, from the begin-

ning, the partial degree of order in the nematic phase and

considering with more care the angular dependence

resulting from the intermolecular interactions. Priest, in

the early 1970s [32], derived expressions for Frank’s elas-

tic constants under the molecular field approximation;

taking as a reference the isotropic phase, the Helmholtz

free energy of the nematic phase is decomposed into its
internal energy (�U ) and entropy (�S) contributions:

�F ¼ �U � T�S: (4)

Both terms are expressed as averages over the single-

molecule orientational distribution function, p(�),

with � denoting the Euler angles specifying the mole-

cular orientation. �U corresponds to the average of
the intermolecular pair potential over all relative

molecular positions and orientations; in the entropy

difference, a translational (�Str) and an orientational

contribution (�Sor) are distinguished. The latter is

neglected when calculating the Helmholtz free energy

in the presence of director deformation, with the

assumption that the orientational distribution func-

tion with respect to the local director is the same in
deformed and undeformed nematics. Simple expres-

sions for Frank’s elastic constants are obtained, where

the role of the order parameters and the molecular

properties can be easily disentangled:

K11=K ¼ 1þ�� 3�0 P4h i= P2h i þ . . . ;

K22=K ¼ 1� 2���0 P4h i= P2h i þ . . . ;

K33=K ¼ 1þ�þ 4�0 P4h i= P2h i þ . . . ;

(5)

where K ¼ K11 þ K22 þ K33ð Þ=3 and P2h i; P4h i are

average values of the second and fourth rank Legendre
polynomials, respectively; �, �0 are constants which

depend on the molecular structure. The presence of the

fourth rank order parameter introduces a difference

between the splay and bend elastic constant; for

P4h i � P2h i, the Nehring–Saupe equality, K11 ¼ K33 is

recovered. Explicit results were obtained for hard spher-

ocylinders, using the second virial approximation for the

translational entropy, according to Onsager theory [33];
in this case the molecular parameters � and �0 can be

simply expressed in terms of the length-to-width ratio.

The correct sequence, K22 , K11 , K33, is predicted,

with K33/K11 being an increasing function of this ratio

and K11¼K22 for infinitely long rods. Analogous results

were obtained at approximately the same time by

Straley, who calculated the elastic constants for hard-

rod LCs in a different way, but under essentially the
same assumptions [34]. Poniewierski and Stecki used a

DFT approach and derived expressions for the Frank

elastic constants of hard spherocylinders in terms of the

direct correlation function and the single-particle orien-

tational distribution function [35]. The numerical results

are similar to those obtained by Priest, even though the

form of the parameters � and �0 in Equation (5) is
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different. Again within the density functional formal-

ism, more general expressions for the elastic constants

were derived by Somoza and Tarazona by relaxing the

assumption that the orientational distribution function

in the presence of a deformation is locally the same as in

the undeformed nematic phase [36]. It was found that

this effect may lower the elastic energy, so reducing the
value of the elastic constants. Hard particle models,

although unable to describe the temperature depen-

dence of the elastic constants in thermotropic nematics,

have played an important role for elucidating the

relevant physics behind the elastic behaviour of LCs,

showing the importance of molecular shape. However,

simple models of ellipsoids or spherocylinders may not

be sufficient to capture more subtle effects which come
from the molecular structure.

Important progress towards a more realistic

description of molecular interactions in thermotropic

LCs was made by models including both short-range

repulsions and dispersion attractions. Gelbart and

Ben-Shaul developed a generalised van der Waals the-

ory, wherein excluded volume interactions between

spherocylinders are superimposed on angle-dependent
pair attractions, introduced at the molecular field level

[37]. The bulk elastic constants were found to be very

sensitive to the four input parameters of the model:

the length and width of the spherocylinders, and

the strength and anisotropy of the attractive potential.

Quantitative predictions are made difficult by the

uncertainty in the values specific to the real nemato-

gens; however, with reasonable choices, elastic constants
close to the experimental results could be obtained

for para-azoxyanisole (PAA or 4,40-dimethoxyazoxy-

benzene). The Nehring–Saupe results [8, 9] and purely

entropic theories [32] are obtained as special cases, for the

vanishing anisotropy of hard core repulsions and for

vanishing intermolecular attractions, respectively. To

emphasise the importance of the molecular shape for

intermolecular interactions in LCs, van der Meer and
co-workers proposed a model of distributed harmo-

nic forces between those parts of the molecules that

are in close proximity [38]. Moreover, they intro-

duced the possibility of short-range smectic-like cor-

relations between the relative positions of pairs of

molecules. Assuming complete orientational order

for molecules represented as simple cylinders, they

found that the increase in the degree of correlation
leads to a decrease of the ratio K33/K11, without

affecting K11/K22. Intermolecular attractions, of dis-

persive or electrostatic nature, superimposed on hard

core repulsions between ellipsoids, were also intro-

duced into DFT treatments [39, 40]; the results were

found to be very sensitive to the model parameters

and, with suitable choices, satisfactory agreement

with experiment could be achieved. Interestingly,

Osipov and Hess, using the DFT approach for a

system of perfectly aligned ellipsoids, showed that,

with the assumption of ellipsoidal equipotential sur-

faces, the elastic constant anisotropy can be expressed

simply in terms of the molecular axial ratio, irrespec-

tive of the specific form of the intermolecular attrac-

tion interaction potential [41]. The DFT formalism
was also used to evaluate the full set of bulk and

surface-like elastic constants of a Gay–Berne fluid,

with a perturbative treatment of the attractive and

repulsive (hard core) contributions to the pair poten-

tial [42]. The surface-like elastic constants k13 and k24

were found to be of the same order of magnitude as

the bulk moduli, with k13 taking positive or negative

values, depending on the details of the long-range
intermolecular potential.

All of the theories mentioned so far use crude repre-

sentations of molecules, mostly as ellipsoids or spher-

ocylinders. Given the role played by the molecular

shape in modulating the intermolecular interactions in

thermotropic LCs, this choice, which is essentially dic-

tated by reasons of simplicity, may be a limit for the

elastic constant theories. In fact, the possibility that
deviations from a rod-like shape can produce signifi-

cant effects was proposed early on; however, such

deviations were considered by phenomenological mod-

els, rather than introduced into statistical mechanics

theories. In particular, the reduction of the cost for

splay and bend deformations was predicted for

wedge- and banana-shaped molecules, respectively;

estimates of these effects were provided by Helfrich
and Gruler, under the assumption of different mechan-

isms: the former ascribed the reduction of elastic con-

stants to the flexoelectric effect [43], whereas steric bend

and splay were invoked by Gruler [44]. More recently,

Dozov discussed the possibility of spontaneous bend

deformations for bent-core mesogens [45]. Using a

modified Maier–Saupe potential, with the point-like

intermolecular interactions replaced by a distribution
of point-like interaction centres inside V-shaped mole-

cules, he estimated the bend elastic constant as a func-

tion of the length-to-curvature ratio; for high enough

values, he predicted a negative K33 modulus and so a

spontaneous director bend.

Even more difficult is the inclusion of molecular

flexibility in the theory of elastic constants. In this

respect, an important and probably overlooked con-
tribution is due to Terentjev and Petscheck, who devel-

oped a molecular field theory for the nematic phase of

semiflexible bimesogens, taking into account short-

range repulsions and attractions between monomers

[46]. Within this model the spacer between mesogens is

responsible for an intrinsic angle between mesogens

and for the molecular flexibility, which is described in

terms of a bare stiffness parameter. All the elastic
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constants are predicted to decrease as the average

angle between the mesogens deviates from 180� and

as the spacer rigidity decreases, with particularly

strong effects for K33.

2.1 Theory and experiments: Schiff’s bases and
thiadiazole derivative

The early development of molecular theories for

elastic constants was accompanied by systematic

experimental investigations, aimed at discovering the

differences and analogies between the elastic proper-

ties of mesogens and checking the ability of theories to

explain them. A classical series of compounds is repre-

sented by the LC Schiff bases, which were thoroughly
investigated, mostly by Leenhouts and co-workers

[47–50]. Here we shall take two derivatives,

4-methoxybenzylidene-40-butylaniline (MBBA) and

4-methoxybenzylidene-40-acetoxybenzene (APAPA),

whose structures are shown in Figure 1. These com-

pounds have the same rigid core and differ only in the

end group attached to the aniline ring: a relatively

rigid acetate substituent in APAPA and the highly

flexible n-butyl chain in MBBA. Figure 2 shows the

bulk elastic constants measured in the nematic phase
of these mesogens [47–50] as a function of the square

of the major second-rank orientational order para-

meter, Szz. For this purpose, the experimental tem-

perature dependence of the order parameter was

used (see [51] for APAPA and [52] for MBBA). We

can see in the figure some discrepancies between the

elastic constants of MBBA obtained from different

measurements; in fact, the experimental determination
of the elastic moduli is not easy and values of the

elastic ratios K33/K11 and K22/K11 are generally more

reliable than those of the individual terms.

The main differences between APAPA and MBBA

concern the bending stiffness: not only is K33 of the

former roughly twice as large as that of the latter, but

also the ratio K33/K11 is significantly higher for

APAPA. Moreover, the dependence of the bend elas-
tic constant of this mesogen on the square of the order

parameter exhibits pronounced deviations from line-

arity. As a rule, it has been found that fairly rigid

mesogens, such as PAA, exhibit elastic properties

similar to those shown for APAPA [47]. For these

systems K33/K11 increases with the length-to-width

ratio, in qualitative agreement with the prediction

of theories for hard uniaxial particles [32, 34–36].
Theoretical predictions tend to overestimate K33/K11;

closer agreement with experiment could be obtained

with the additional inclusion of electrostatic and dis-

persion intermolecular interactions [40]. In general,

the results obtained for fairly rigid mesogens indicate

that the molecular shape, and thus the steric repulsions

and short-range dispersion interactions, which are

MBBA  

18°C 46°C
Cr

H3CO

H3CO

C4H9

←⎯⎯⎯→ N ←⎯⎯⎯→I

82°C 111°C
Cr←⎯⎯⎯→ N ←⎯⎯⎯→I

APAPA 

CH=N

CH=N CH3CO

O

Figure 1. Chemical structure of the Schiff’s bases MBBA
(top) and APAPA (bottom), with the corresponding
transition temperatures [47].

0.2
0

5

10

15 APAPA

K
33

/p
N

Szz
2

0

5

10

15
MBBA

K
ii/

pN

0.3 0.4 0.2

Szz
2

0.3 0.4

Figure 2. Experimental values of the elastic constants for the nematic phases of APAPA (left, [47, 48]) and MBBA (right,
closed symbols [49], open symbols [50]). The dashed lines represent theoretical predictions from [40]. The elastic constants are
shown as a function of the square of the second-rank order parameter, Szz; the relation between temperature and Szz was derived
from [51] for APAPA and from [52] for MBBA. From bottom to top: K22, K11, K33.
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modulated by the molecular shape, are the main deter-

minants of the elastic properties of nematics.

In contrast, theories for hard uniaxial particles can-

not explain the changes in the elastic constants when
going from APAPA to MBBA. Even considering that

the flexibility of the alkyl chain contributes to a decrease

in the average length and an increase of the average

width, in comparison to the all-trans conformer, the

length-to-width ratio of MBBA is greater than that of

APAPA [47]. Therefore, an increase of K33/K11 would

be predicted by theories for hard uniaxial particles,

which is exactly the opposite of what is found experi-
mentally. Actually, the differences between the elastic

properties of APAPA and MBBA are an example of a

quite general behaviour: the bend modulus K33 and the

ratio K33/K11 usually decrease with the increasing length

of the alkyl chains along homologous series [48, 53–55].

Numerical calculations of the bulk elastic constants of

MBBA were performed, based on a weighted density

functional formalism, for a system of hard ellipsoids of
revolution with superimposed quadrupolar and disper-

sion interactions [40]. It was found that inclusion of the

latter has the effect of reducing the elastic constant

ratios. The theoretical results are also shown in Figure

2; we can see that even so the calculated elastic constants

remain too high, especially K33, which is also too steep a

function of the order parameter in comparison to the

experimental results. The reduction of the elastic ratios
with increasing chain length was also ascribed to short-

range smectic-like correlations, which would be pro-

moted by chain flexibility. This interpretation was sub-

stantiated by the results of the van der Meer model

based on distributed harmonic forces with smectic-like

short-range correlations, assuming that the latter are

enhanced by the alkyl chains and increase with the

chain length within homologous series [38].
Another possible reason for the decrease of the K33/

K11 ratio with increasing chain length along homolo-

gous series was suggested: the presence of bent confor-

mers in very flexible molecules [50]. Namely, according

to the predictions of Helfrich [43] and Gruler [44],

director bending should be easier for bent-shaped mole-

cules. To test such predictions, the elastic constants

were measured for the nematic phase of the thiadiazole
derivative shown in Figure 3, which was deemed as a

particularly good example because of its structure and

its rigidity [56]. However, no special effects were

detected; the elastic ratios, which are also shown in

the figure, are in keeping with those of similar, rigid

and non-curved mesogens. Thus, a weak effect of the

shape bending was inferred. However, some years later

the opposite conclusion was reached from measure-
ments of the elastic constants for mesogenic dimers,

separated by an odd or an even number of units in the

spacer [57]. In these systems, a small chemical difference

has significant steric consequences, since odd dimers

are characterised by an intrinsic bend, whereas the

even homologues are nearly straight. It was found

that, whereas the ratio K22/K11 is similar for the two

kinds of dimers, the ratio K33/K11 is considerably smal-
ler for odd members than for even members. Such a

behaviour could be explained by the model developed

by Terentjev and Petscheck [46].

3. The Surface Interaction model

3.1 Theoretical background

The ‘Surface Interaction’ model can be seen as a gen-
eralisation of the Maier–Saupe theory [28], to enable

a detailed account of the molecular structure. The

starting point for the derivation of the deformation

free energy in nematics is the change in the single-

molecule orientational distribution function, p(�),

due to the director distortion; a phenomenological

form of p(�) in terms of the director field, n(R), is

used. This is a major difference from other theories,
which generally start from the pair-wise interactions

between molecules located at positions where the

director has different orientations, under the assump-

tion that the single-molecule orientational distribution

function with respect to the local director is not

affected by director deformations. Some analogy can

be found with the approach proposed some years ago

by Marrucci and Greco, who also tried to introduce
features of the mesogen shape into a Maier–Saupe-like

molecular field theory [58].

A distinguishing feature of the SI model is the

possibility of taking into account the conformational

0.98
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K33/K11
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Figure 3. Elastic constant ratios measured in the nematic
phase of the thiadiazole derivative shown at the top as a
function of the reduced temperature, T/TNI [56].
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freedom, which characterises most thermotropic

mesogens. The molecular structure is introduced into

the single-molecule orientational distribution func-

tion, p(�), through the concept of the molecular sur-

face. This can be easily constructed on the basis of the

atomic coordinates [59]; nowadays, these can be accu-

rately obtained by modern computational techniques,
such as molecular mechanics and quantum chemical

methods. Indeed, the possibility of being integrated

with such techniques, so as to exploit their capability,

is a valuable feature of the SI method.

The full derivation of the expressions for the elastic

constants of the nematics according to the SI model

is presented in [23], to which interested readers

are referred; only the main features of the approach
will be outlined here, to help the understanding of

the results which we report later. The basic feature of

the SI model is the parameterisation of the orienta-

tional molecular field in the nematic phase according

to the anisotropy of the molecular surface. This is done

by assuming a Maier–Saupe form for the angular

dependence of the orientational molecular field experi-

enced by each element of the molecular surface:

dU ¼ kBTe P2 n � sð Þ dS; (6)

where s and n are unit vectors normal to the surface

element dS and parallel to the director, respectively,

and P2 is the second Legendre polynomial. The para-

meter e, which has dimensions of inverse square

length, specifies the orienting strength of the medium.

Equation (6) can be simply seen as the truncation to
the lowest-order term, allowed by phase symmetry, of

a Taylor series expansion of the angular dependence of

the molecular field.

The orientational molecular field experienced by a

molecule in the uniaxial nematic phase, U(�), is then

obtained by integrating Equation (6) over the molecu-

lar surface [60, 61]:

U �ð Þ ¼ kBTe
Z

S

dS P2 n � sð Þ; (7)

where � denotes the Euler angles specifying the mole-

cular orientation in a laboratory frame and S is the

molecular surface. Given the orientational molecular

field, the single-molecule orientational distribution
function, p(�), is defined as

p �ð Þ ¼ exp �U �ð Þ=kBT½ �
Q

; (8)

where Q is the orientational partition function:

Q ¼
Z

d� exp �U �ð Þ=kBT½ �: (9)

The model can be easily generalised to the case of

flexible molecules; if these can exist in a set of different
conformational states [62], the orientational distribu-

tion function, in Equation (8), should be replaced by the

conformational-orientational distribution function

pm �ð Þ ¼
exp � Vm þUm �ð Þ

� �
=kBT

� �
Q

; (10)

where the index m denotes the mth conformer, char-

acterised by the torsion potential Vm and the orienting

potential Um. Then, the conformational-orientational
partition function reads

Q ¼
X

m

exp �Vm=kBT
� �

Qm; (11)

where the sum is over all molecular conformers and

Qm is the orientational partition function for the mth

conformer:

Qm ¼
Z

d� exp �Um �ð Þ=kBT
� �

: (12)

The average value of any arbitrary function, g, can be

expressed as

gh i ¼
X

m

wmgm; (13)

where wm is the statistical weight of the mth

conformer,

wm ¼
exp �Vm=kBT
� �

Qm

Q
; (14)

and gm is the orientational average of the function,

calculated for the mth conformer,

gm ¼
R

d� exp �Um �ð Þ=kBT
� �

gm �ð Þ
Qm

: (15)

In the nematic phase the statistical weights of confor-

mers will be different from those in the isotropic phase
and will depend on the degree of order. Namely,

depending on their shape, conformers will be more

or less well accommodated in the nematic phase; in

general, elongated conformers are expected to be sta-

bilised over the bent ones.

The orienting strength e appearing in Equation (6)

is assumed to take the form [60, 63]

e ¼ � x2

vkBT
ah i; (16)

where v is the volume per molecule, e is a constant and

hai is the average value of the surface integral
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appearing in Equation (7). We can write for the mth

conformer

am ¼
Z

Sm

dS P2 n � sð Þ; (17)

with Sm being the molecular surface of the conformer.

The average value ah i can be seen as an order parameter,

which vanishes in the isotropic phase and measures the
degree of molecular order in the nematic phase.

The route from the orientational distribution

function to the elastic constants goes through the

Helmholtz free energy and its dependence on the direc-

tor orientation. The internal energy and entropy con-

tributions to the free energy density, indicated as �u

and �s, respectively, are expressed in terms of the

molecular field potential and the orientational distri-
bution function in the nematic phase [63], as

�u ¼ 1

2v
Uh i þ 1

v
�Vh i; (18a)

and

�s ¼ � kB

v
ln ph i; (18b)

where �V¼V - ,V.iso, with ,V.iso being the average
value of the torsional potential in the isotropic phase.

Then, the Helmholtz free energy density takes the form

f ¼ fiso þ
x2

2v2
ah i2� kBT

v
ln Qþ 1

v
�Vh i; (19)

where fiso is the density of Helmholtz free energy in the

isotropic phase.

The key point for the derivation of expressions for the
elastic constants is the recognition that the free energy

defined by Equation (19) is an implicit function of the

director distortions. These affect the orienting potential,

Equation (7), since in a non-uniform nematic phase the

vector n becomes a function of the position on the mole-

cular surface. For small deformations, characterised by a

length scale much longer than the molecular dimensions,

the Taylor series expansion of the free energy density (see
Equation (19)) with respect to deformations, can be trun-

cated at the quadratic contributions and the elastic con-

stants are identified with the coefficients of these terms.

The following molecular expressions are obtained for the

elastic constants appearing in Equation (1):

k02 ¼ cXYZ; (20a)

k013 ¼ cXZXZ; (20b)

K 0ii ¼ cIIXX � cIIZZ � 2cXZXZ �i1 � �i3ð Þ
� 3e cIXZ;IXZ � cIXZ2�i2

� �
;

I ¼ X for i ¼ 1; I ¼ Y for i ¼ 2; I ¼ Z for i ¼ 3;

(20c)

K 022 þ k024 ¼
1

2
cXXXX þ cXXYY � cXXZZf

� 6e cXXZ;XXZ � cXXZ;YYZ

� �
g; (20d)

where K 0ii ¼ ðv=3ekBTÞKii, k0i ¼ ðv=3ekBTÞki. The terms

cJKL, cJKLM, cJKL,JKL, bJKL appearing in these expres-

sions are the average values, calculated over the orien-
tational distribution for undeformed nematics, of

elements of Cartesian tensors, defined as integrals

over the molecular surface; they have cumbersome

forms, which are reported in [23]. The indices X,Y,Z

refer to the axes of a laboratory frame. In these

equations e denotes the orienting strength,

e ¼�x2 ah i0=vkBT . The elastic constants can be calcu-

lated using Equations (20) for any mesogen, without
free parameters, only on the basis of the geometry and

the relative torsional energy of the conformers.

3.2 Predictions for Schiff’s bases and thiadiazole
derivative

The elastic constants of MBBA, APAPA and the thia-

diazole derivative shown in Figure 3 were obtained
according to the same procedure outlined in [23, 64].

For each mesogen all conformers were generated and

for each conformer: (1) the geometry was optimised –

for the cases reported in this work, DFT calculations

at the B3LYP/6-31G** level were performed [65]; (2)

the solvent-excluded molecular surface was con-

structed according to the Sanner algorithm, as

implemented in the MSMS package [66] (the solvent-
excluded molecular surface was calculated assuming

the following van der Waals radii [67]: rC ¼ 0.185 nm,

rO ¼ 0.15 nm, rN ¼ 0.155 nm, rH ¼ 0.1 nm, rS ¼ 0.18

nm and a rolling sphere radius equal to 0.3 nm); (3) the

conformer contribution to the order parameters and

the elastic constants was evaluated. Calculations were

performed in the same molecular frame for all con-

formers and the average values then evaluated accord-
ing to Equation (13), with the orientational distribution

function of the undeformed nematic phase. The Saupe

ordering matrix of a mesogen was also obtained in this

way and then diagonalised.

For the Schiff’s bases shown in Figure 1 several

conformers were found. These have the same aromatic

core, which is not fully planar because the C(Phe)-

C(Phe)-NCH dihedral angle takes values around
37–38�. For MBBA, 28 conformers were included,

differing in the orientation of the methoxy group (in
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the plane of the attached aromatic ring, on both sides),

in that of the alkyl chain (approximately perpendicu-

lar to the adjacent benzene plane, above and below)
and in the alkyl chain conformation. All conformers

with the same alkyl chain conformation were assumed

to have the same energy; in Table 1 the chain

conformations considered in our calculations are

reported, together with the corresponding torsional ener-

gies. For APAPA, which has a limited flexibility, only

eight conformers were included, with the methoxy group

on both sides of the coplanar phenyl ring and four possi-
ble orientation of the O–CO–C plane, forming dihedral

angles of about�45� and�135� with the linked aromatic

plane; the same energy was assumed for all these confor-

mers. For the thiadiazole derivative shown in Figure 3, a

single structure was taken; this has the three aromatic

rings in the same plane and an angle of about 20� between

the para axes of the two benzene rings, which is close to

the value of 18� derived from electron diffraction mea-
surements on the unsubstituted central ring system [56].

The elastic constants for a given compound were

calculated as averages over all conformers, according

to Equation (20). The molecular volume, in Equation

(20), was given the value 0.27 nm3 for APAPA, 0.29 nm3

for MBBA and 0.26 nm3 for the thiazole derivative, as

obtained from the molecular surface calculation [66].

Figure 4 shows the calculated elastic constants of

APAPA and MBBA as a function of the square of the

major principal value of the Saupe ordering matrix,

Szz. We can see that the theoretical results are well in

line with the experimental data, as shown in Figure 2.

The magnitude, anisotropy and order parameter

dependence of the elastic constants of APAPA and
MBBA are correctly predicted. In agreement with

experiment, all the bulk elastic coefficients of

APAPA are higher than those for MBBA, but the

most impressive difference is exhibited by K33. The

main reason behind this behaviour is molecular flex-

ibility: for MBBA several more conformers than those

for APAPA can be found and, more importantly, they

can have quite different shapes. We have found similar
results when comparing other mesogens with increasing

flexibility, namely PAA, 4-n-pentyl-40-cyanobiphenyl

(5CB) and 4-n-octyl-40cyanobiphenyl (8CB) [64].

The decrease of the bending stiffness on going

from APAPA to MBBA is not a generic effect, asso-

ciated with the decrease of order for the more flexible

mesogen; neither can it be related to the difference in

biaxiality between the two mesogens. We have calcu-
lated the biaxiality ratio (Sxx - Syy)/Szz, where Sii are

the principal values of the Saupe ordering matrix

(Szz. Sxx . Syy), and we have found very close values

for the two compounds. Even the fourth rank order

parameters ,P4. which, according to Equations (5),

would be the main reason for the difference between

K33 and the other elastic constants, is similar for

APAPA and MBBA. In contrast, as we have already
shown in [64], the bending stiffness seems to be sensi-

tive to a specific molecular property, that is, the cur-

vature of the molecular shape. APAPA conformers

are elongated and similar in shape, whereas the

conformers of MBBA exhibit more significant differ-

ences, as a consequence of rotation of the alkyl chain

bonds, and some of them are really curved. We show

in Figure 5 two MBBA conformers, both having a
single gauche in the alkyl chain, one in the first and

Table 1. Torsional energy of MBBA conformers with
different alkyl chain conformations, as obtained from DFT
calculations at the B3LY/6-31G** level [65]; the all-trans
conformation is taken as a reference. The symbol giþ(-)
denotes a gaucheþ(-) state in the ith CH2–CH2 chain bond.
A given conformer is identified by the sequence of its gauche
states (e.g., g1þ g2þ denotes a conformer having the first and
the second chain bond in gaucheþ states).

Alkyl chain conformation Vm /kJ mol-1

all-trans 0

g1þ, g1- 2.1

g2þ, g2- 3.4

g1þ g2þ, g1- g2- 5.5

0.2
0

5

10

15 APAPA

Szz
2

K
ii/

pN

K
ii/

pN

0

5

10

15
MBBA

0.3 0.4 0.2

Szz
2

0.3 0.4

Figure 4. Bulk elastic constants calculated with the SI model for the nematic phase of APAPA (left) and MBBA (right), as a
function of the square of Szz, the major principal component of the Saupe ordering matrix. From bottom to top: K22, K11, K33.
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the other in the second CH2–CH2 bond. In the same
figure we also show the bulk elastic constants calcu-

lated for these conformers as a function of Szz
2, the

square of the major principal value of the Saupe order-

ing matrix. These results highlight two important

issues. First, the significant differences between the

elastic constants calculated for the single conformers,

which are even larger than those generally found in

experiments between different mesogens, clearly show
that the conformational distribution cannot be

neglected when connecting elastic constants and mole-

cular structure. Secondly, the peculiar behaviour of

K33 and its special sensitivity to molecular bending

clearly appears from the results in Figure 5. Whereas

K11 and K22 simply exhibit a decrease on going from

the elongated to the bent conformer, the bend elastic

constant K33 exhibits a large change: K33 is compar-
able to that predicted for APAPA, for the elongated

conformer, whereas for the bent conformer it is very

small and even negative at high ordering. We can also

see in Figure 5 that for both conformers, in contrast to

K11 and K22, the bend elastic constant K33 displays a

non-linear dependence on the square order parameter.

It might be worth noticing that a negative K33 contri-

bution by some conformers can be compatible with the
stability of the uniform nematic phase, because the

physical property of the LC corresponds to an average

over all conformers [64].

It is now interesting to check the predictions of the SI

model for the thiadiazole derivative shown in Figure 3.

The calculated elastic ratios are shown in Figure 6 as a

function of the square order parameter, Szz. We can see

that the calculated ratio, K22/K11, is close to 0.8 and
nearly independent of temperature, as found

experimentally; the ratio, K33/K11, ranges between 1.5

and 2, and is not far from the measured value, which is

about 1.8 and scarcely dependent upon temperature. As

observed when the experimental data were reported [56],

the predicted behaviour is similar to that of other rather

rigid and non-curved mesogens with similar aspect

ratios. In fact, this result is not surprising in view of the
molecular shape obtained by geometry optimisation,

also shown in Figure 6, which does not exhibit any

pronounced bend. In contrast to [56], we can conclude

that the normal behaviour exhibited by the bend elasti-

city of this thiadiazole derivative is not in contrast to

Gruler’s predictions; because of the low bend angle, this

0.1

0

4

8

12

16

K
ii/

pN

Szz
2

0.2 0.3 0.4

K
ii/

pN

0

4

8

12

16

0.1
Szz

2
0.2 0.3 0.4

Figure 5. The bulk elastic constant calculated with the SI model for the hypothetical nematic phase formed by two different
conformers of MBBA, as a function of the square of Szz, the major principal component of the Saupe ordering matrix. The two
conformers have a gauche state in the second (left) and in the first (right) CH2–CH2 bond of the alkyl chain. The molecular
structures obtained from the geometry optimisation are shown at the top. Left, from bottom to top: K22, K11, K33; right, from
bottom to top: K33, K22, K11.
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Figure 6. Elastic constant ratios calculated with the SI
model for the nematic phase of the compound shown in
Figure 3, as a function of the square of Szz, the major
principal value of the Saupe matrix. The molecular structure
obtained from geometry optimisation is shown at the top.
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compound does not appear to be a good choice with
which to test the effect of a curved molecular shape on

the bend stiffness of the nematic phase.

Finally, we show in Figure 7 the surface-like elastic

constants, k13 and k24, calculated for APAPA and

MBBA, as a function of the square of the major prin-

cipal component of the Saupe ordering matrix. We

cannot compare these results with experiment, due to

the scarcity of available data; only a comparison with
a few theoretical predictions is possible. An analogy

between the trends shown in Figure 7 and those

reported in [64] for n-alkyl-cyanobyphenyls (nCBs)

can be recognised, with k24 taking values close to

zero, whereas k13 is negative and larger in magnitude,

yet smaller than the bulk elastic constants. In all of

these cases the saddle-splay elastic constant is in clear

disagreement with the Nehring–Saupe prediction,
according to which it should be negative and compar-

able in magnitude to the largest of the bulk elastic

constants. In contrast, the Eriksen inequality [4],

K22 	 |k24|, is satisfied.

4. Concluding remarks

Molecular models for the elasticity of nematic LCs

have at least a 40-year history; the foundations were
laid in the 1970s by the pioneering molecular field

theory of Nehring and Saupe [8, 9] and the works of

Priest [32] and Straley [34]. Subsequent developments,

aimed at overcoming simplifying assumptions, such as

the molecular field approximation or the existence of

perfect orientational order, as well as exploring the

role of different intermolecular interactions, have con-

tributed to our present understanding. A powerful
methodology is represented by the DFT, which pro-

vides a general framework to derive expressions for

the free energy of deformed nematics, exploiting the

theoretical tools developed in the context of liquid

state theory. The theoretical expressions for the elastic

constants are obtained in terms of the orientational

order parameters and the structural parameters

related to the direct correlation functions. Numerical
estimates are feasible for simple model systems of uni-

axial particles. It has been shown that the main fea-

tures of the dependence of the elastic constants on

temperature and on molecular structure can be simply

explained in terms of the length-to-width ratio in the

case of fairly rigid mesogens.

However, these models fail when dealing with flex-

ible mesogens. This is not a minor issue, since flexibil-
ity is a basic characteristic of mesogens and the degree

of molecular flexibility represents an important way of

controlling the properties of LC materials. Different

explanations have been proposed for the effects of

flexibility, such as the presence of curved conformers

[50], which would reduce the cost for bend director

distortions [44, 46], or the enhancement of smectic-

like short-range correlations by alkyl chains [38].
However, these proposals could not be adequately

tested by theory and calculations, because of the diffi-

culty of dealing with arbitrarily shaped particles. We

have recently developed an approach, called the

Surface Interaction, which can overcome some of

these limitations and which has enabled us to investi-

gate unexplored issues [23, 64]. The SI model can be

seen as a reformulation of the Maier–Saupe theory,
which is suitable for integration with modern compu-

tational tools for molecular structure determination,

so as to enable a realistic account of the molecular

features. Two main effects emerge from our calcula-

tions for typical mesogens:

(1) Flexibility plays an essential role and cannot be

neglected when considering the elastic properties
of nematics. Different conformers, by virtue of

their different shape, can give quite different con-

tributions to the elastic constants. Interestingly,

geometrical changes deriving from rotation

around alkyl chain bonds are sufficient to produce

non-negligible effects.

(2) Special effects of a curved molecular shape emerge

when considering the bending stiffness. These
were suggested fairly early on by Gruler [44], but

since then almost ignored, with a significant

exception [45], in which the possible implications

for the stability of the nematic phase, in particular

for intrinsically bent mesogens, were pointed out.

It is worth mentioning that similar conclusions

were reached in [46], where theoretical expressions
for the elastic constants of semiflexible mesogenic

dimers were derived. The investigation can now

0.2
–2.0

–1.5

–1.0

–0.5

0.0 k24

k13

K
ij/
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Szz
2
0.3 0.4

Figure 7. Surface-like elastic constants calculated with the
SI model for the nematic phases of APAPA (solid lines) and
MBBA (dashed lines), as a function of the square of Szz, the
major principal component of the Saupe ordering matrix.
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be extended to any kind of mesogen, using the SI

model.

After about 40 years of theoretical investigations,

we may say that there is a general consensus on the

importance of the molecular shape in determining the

elastic constants of nematics; this means that steric

repulsions and short-range dispersion interactions,
which are modulated by the molecular shape, must

be the main factor responsible for the elastic response.

Likewise, theoretical and experimental studies have

shown that electrostatic interactions, although in

some cases non-negligible, are not the main reason

for the orientational order, which underlies the

curvature elasticity in LCs [68].

In the future, there is room for improvement in the
available theories in different respects, but inclusion of

molecular features seems to be a major issue. Their

importance has been shown by the SI model, which,

however, is only a phenomenological approach; a soun-

der statistical theory should combine a realistic mole-

cular representation with a suitable account of the

structure of the fluid. We can envisage that in this

respect an important contribution will be given by
computer simulation techniques. These have contribu-

ted to our present understanding of LC elasticity

[69–71], but still there are practical and theoretical dif-

ficulties, related on the one hand to the high computa-

tional cost and on the other to the connection between

the structural LC properties and elastic response [72,

73]. A stronger impact is expected in the future, with the

feasibility of large-scale atomistic studies [74].
A few final comments are deserved by the surface-

like elastic constants of nematics, which remain an

open problem. In the mid-1990s the following was

stated [13]:

‘The present situation with k13 and k24 is similar to

that of the elastic constants K22 about thirty years ago

when its value was not known. Over these years joint

efforts of the theoretical macroscopic approach and
experiment have made the twist elasticity a well-

defined physical idea and K22 a reliable measured

quantity. We believe that the same approach will

allow us to comprehend the nature of the surface-like

elasticity in LCs.’

After another 15 years, our knowledge in this field

does not seem to have advanced significantly. A joint

theoretical and experimental effort is probably needed
to shed light on this problem, treating on the same

footing the surface elasticity and anchoring.
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